Gonorrhoeae must Compete with the Naturally Inhabitant of Microbial Community Right at the Outer Mucosal Surface to Authorize Infection

Lusia Sri Sunarti *

Department of Microbiology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia.

*Author to whom correspondence should be addressed.


Aim: to describe the competition between Neisseria gonorrhoeae with the naturally inhabitant of microbial community right at the outer mucosal surface to authorize infection.

Discussion: Gonorrhea is a sexually transmitted infection (STI) caused by the bacterium N. gonorrhea. Official report mention that by the year 2020, there were an estimated 82.4 million new infections among adults globally and poses a risk of onward transmission to sex partners. It surely could affect both men and women; for male, the symptoms are more obvious, but for women it occurs more often without prominent clinical symptoms and usually lead to long-term health problems including pelvic inflammatory disease and infertility. The female reproductive tract with its abundant variety of epithelial cells act as its primary niche where initially it was inhabited by normal microbiota, characterized by a high abundance of Lactobacilli, and uniquely linked to the host’s mucosal immunity and plays a critical role in the regulation of genital inflammation. Unfortunately, the dynamics regarding number and composition of vaginal microbiota has been shown to fluctuate over several internal and external factors, especially due to STI like gonorrhea. Its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are commonly found among commensal inhabitants, but it has also developed unique features that are crucial to its pathogenesis. The scope of its pathogenesis field elucidate competition, colonization and growth properties as main virulence determinants.

Conclusion: Competition between N. gonorrhoeae and the already exist natural microbiota of the vagina occur initially at the mucosal surface. This gonococcus has several intrinsic factors that can facilitate its competitiveness including adherence, even though not all available adhesion mechanisms are actually used by this organism during the course of infection/colonization of any specific site.

Keywords: Gonococcal, lactobacillus, epithelium, cervix, vagina, colonization, nutrition

How to Cite

Sunarti , L. S. (2023). Gonorrhoeae must Compete with the Naturally Inhabitant of Microbial Community Right at the Outer Mucosal Surface to Authorize Infection. International Journal of Pathogen Research, 12(6), 55–66. https://doi.org/10.9734/ijpr/2023/v12i6253


Download data is not yet available.


Springer C, Salen P. Gonorrhea. [Updated 2023 Apr 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available:https://www.ncbi.nlm.nih.gov/books/NBK558903/

Mahapure K, Singh A. A review of recent advances in our understanding of Neisseria gonorrhoeae. Cureus. 2023;15(8): e43464. Available:https://doi.org/10.7759/cureus.43464

Hananta IP, van Dam AP, Bruisten SM, Schim van der Loeff MF, Soebono H, de Vries HJ. Gonorrhea in Indonesia: High Prevalence of Asymptomatic Urogenital Gonorrhea but No Circulating Extended Spectrum Cephalosporins-Resistant Neisseria gonorrhoeae Strains in Jakarta, Yogyakarta, and Denpasar, Indonesia. Sex Transm Dis. 2016;43(10):608-16. Available:https://doi.org/10.1097/OLQ.0000000000000510.

Vigneswaran HT, Baird G, Hwang K, Renzulli J, Chan PA. Etiology of symptomatic urethritis in men and association with sexual behaviors. R I Med J. 2016;99(6):37-40.

Fairley CK, Hocking JS, Zhang L, Chow EP. Frequent Transmission of Gonorrhea in Men Who Have Sex with Men. Emerg Infect Dis. 2017;23(1):102-104. Available:https://doi.org/10.3201/eid2301.161205.

Lin JS, Donegan SP, Heeren TC, Greenberg M, Flaherty EE, Haivanis R, Su XH, Dean D, Newhall WJ, Knapp JS, Sarafian SK, Rice RJ, Morse SA, Rice PA. Transmission of Chlamydia trachomatis and Neisseria gonorrhoeae among men with urethritis and their female sex partners. J Infect Dis. 1998;178(6):1707-12.


Vaezzadeh K, Sepidarkish M, Mollalo A, As'adi N, Rouholamin S, Rezaeinejad M, Mojtahedi MF, Hosseini SMM, Taheri M, Mahjour S, Mohammadi M, Chemaitelly H, Rostami A. Global prevalence of Neisseria gonorrhoeae infection in pregnant women: A systematic review and meta-analysis. Clin Microbiol Infect. 2023 Jan;29(1):22-31. Available:https://doi.org/10.1016/j.cmi.2022.08.008.

Kirkcaldy RD, Weston E, Segurado AC, Hughes G. Epidemiology of gonorrhea: A global perspective. Sex Health. 2019 Sep;16(5):401-411. DOI: https://doi.org/10.1071/SH19061.

Sunarti LS. Microbial normal flora: Its existence and their contribution to homeostasis. Journal of Advances in Microbiology, 2022;22(9):1-15 Available:https://doi.org/10.9734/jamb/2022/v22i930483.

Lehtoranta L, Ala-Jaakkola R, Laitila A, Maukonen J. Healthy vaginal microbiota and influence of probiotics across the female life span. Front Microbiol. 2022;13:819958. Available:https://doi.org/10.3389/fmicb.2022.819958.

Dabee S, Passmore JS, Heffron R, Jaspan HB. The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infect Immun. 2021;89(5):e00487-20. DOI: https://doi.org/10.1128/IAI.00487-20.

Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020;19:203. Available:https://doi.org/10.1186/s12934-020-01464-4.

Bayigga L, Nabatanzi R, Ssekagiri A, Kateete DP, Sekikubo M, Anderson DJ, et al. Diverse vaginal microbiome was associated with pro-inflammatory vaginal milieu among pregnant women in Uganda. Human Microbiome Journal, 2020;18:100076. Available:https://doi.org/10.1016/j.humic.2020.100076.

Delgado-Diaz DJ, Jesaveluk B, Hayward JA, Tyssen D, Alisoltani A, Potgieter M, et al. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. Microbiome. 2022 Aug 31;10(1):141. Available:https://doi.org/10.1186/s40168-022-01337-5.

Lewis FMT, Bernstein KT, Aral SO. Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet Gynecol. 2017;129(4):643-54. Available:https://doi.org/10.1097/AOG.0000000000001932.

Hakimjavadi H, George SH, Taub M, Dodds LV, Sanchez-Covarrubias AP, Huang M, et al. The vaginal microbiome is associated with endometrial cancer grade and histology. Cancer Res Commun. 2022 Jun;2(6):447-55. DOI: https://doi.org/10.1158/2767-9764.CRC-z2-0075.

Lovett A, Seña AC, Macintyre AN, Sempowski GD, Duncan JA, Waltmann A. Cervicovaginal microbiota predicts Neisseria gonorrhoeae clinical presentation. Frontiers in Microbiology, 2021;12: 790531.


Lee YH, Kang G-U, Jeon SY, Tagele SB, Pham HQ, Kim M-S, Ahmad S, Jung D-R, Park Y-J, Han HS, et al. Vaginal Microbiome-Based Bacterial Signatures for Predicting the Severity of Cervical Intraepithelial Neoplasia. Diagnostics. 2020;10(12):1013. Available:https://doi.org/10.3390/diagnostics10121013

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-41. DOI:https://doi.org/10.1016/j.cell.2014.03.011.

Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. Microbiome. 2015 Apr 25;3:17.


Blaser MJ, Webb GF. Host demise as a beneficial function of indigenous microbiota in human hosts. mBio. 2014 Dec 16;5(6):e02262-14. Available:https://doi.org/10.1128/mBio.02262-14.

Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapongsa T, Kusanovic JP, Romero R. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG. 2011;118(5):533-49. Available:https://doi.org/10.1111/j.1471-0528.2010.02840.x.

Song SD, Acharya KD, Zhu JE, Deveney CM, Walther-Antonio MRS, Tetel MJ, Chia N. Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. mSphere. 2020;5(4):e00593-20. Available:https://doi.org/10.1128/mSphere.00593-20.

Amabebe E, Anumba DOC. Psychosocial Stress, Cortisol Levels, and Maintenance of Vaginal Health. Front Endocrinol (Lausanne). 2018 Sep 24;9:568. Available:https://doi.org/10.3389/fendo.2018.00568.

Krog MC, Hugerth LW, Fransson E, Bashir Z, Nyboe Andersen A, Edfeldt G, et al.. The healthy female microbiome across body sites: Effect of hormonal contraceptives and the menstrual cycle. Hum Reprod. 2022;37(7):1525-1543. Available:https://doi.org/10.1093/humrep/deac094.

Pryor R, Martinez-Martinez D, Quintaneiro L, Cabreiro F. The role of the microbiome in drug response. Annu Rev Pharmacol Toxicol. 2020;60:417-435. Available:https://doi.org/10.1146/annurev-pharmtox-010919-023612.

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. Available:https://doi.org/10.1371/journal.pbio.

Pendharkar S, Skafte-Holm A, Simsek G, Haahr T. Lactobacilli and their probiotic effects in the vagina of reproductive age women. Microorganisms. 2023;11(3):636 Available:https://doi.org/10.3390/microorganisms11030636.

Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, et al. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front Immunol. 2018;9:376. Available:https://doi.org/10.3389/fimmu.2018.00376.

Mijac VD, Dukić SV, Opavski NZ, Dukić MK, Ranin LT. Hydrogen peroxide producing Lactobacilli in women with vaginal infections. Eur J Obstet Gynecol Reprod Biol. 2006; 129(1): 69-76. Available:https://doi.org/10.1016/j.ejogrb.2005.11.036.

Ciszewski WM, Sobierajska K, Stasiak A, Wagner W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front Cell Dev Biol. 2022;10:1012254. Available:https://doi.org/10.3389/fcell.2022.1012254.

Forney LJ, Foster JA, Ledger W. The vaginal flora of healthy women is not always dominated by Lactobacillus species. J Infect Dis. 2006;194(10):1468-9; author reply 1469-70. Available:https://doi.org/10.1086/508497.

Romero-Gamboa DG, Díaz-Martínez LA, Díaz-Galvis ML, González-Blanco DP. Impact of genital hair removal on female skin microenvironment: Barrier disruption and risk of infection, a literature review. Medicas UIS. 2019;32(3): 27-33. Available:https://doi.org/10.18273/revmed.v32n3-2019004.

Coelho GDP, Ayres LFA, Barreto DS, Henriques BD, Prado MRMC, Passos CMD. Acquisition of microbiota according to the type of birth: an integrative review. Rev Lat Am Enfermagem. 2021;29:e3446. Available:https://doi.org/10.1590/1518.8345.4466.3446.

Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel). 2021;11(2):148. DOI: https://doi.org/10.3390/life11020148.

Browne HP, Shao Y, Lawley TD. Mother-infant transmission of human microbiota. Curr Opin Microbiol. 2022;69:102173. DOI:https://doi.org/10.1016/j.mib.2022.102173.

Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109-17. Available:https://doi.org/10.1016/j.molmed.2014.12.002.

Saadaoui M, Singh P, Ortashi O, Al Khodor S. Role of the vaginal microbiome in miscarriage: exploring the relationship. Front Cell Infect Microbiol. 2023;13:1232825. Available:https://doi.org/10.3389/fcimb.2023.1232825.

Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Semin Immunopathol. 2020;42(4):487-499. Available:https://doi.org/10.1007/s00281-020-00817-w.

Freitas AC, Chaban B, Bocking A, Rocco M, Yang S, Hill JE, Money DM; VOGUE Research Group. The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women. Sci Rep. 2017;7(1):9212. Available:https://doi.org/10.1038/s41598-017-07790-9.

Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front Public Health. 2020;8:326. Available:https://doi.org/10.3389/fpubh.2020.00326.

Kroon SJ, Ravel J, Huston WM. Cervicovaginal microbiota, women's health, and reproductive outcomes. Fertil Steril. 2018;110(3):327-336. DOI: https://doi.org/10.1016/j.fertnstert.2018.06.036.

Chávez-Torres M, Gómez-Palacio-Schjetnan M, Reyes-Terán G, Briceño O, Ávila-Ríos S, Romero-Mora KA, Pinto-Cardoso S. The vaginal microbiota of women living with HIV on suppressive antiretroviral therapy and its relation to high-risk human papillomavirus infection. BMC Microbiol. 2023;23(1):21. Available:https://doi.org/10.1186/s12866-023-02769-1.

Kim JM, Park YJ. (2018). Lactobacillus and Urine Microbiome in Association with Urinary Tract Infections and Bacterial Vaginosis. Urogenital Tract Infection. 2018;13(1): 7-13. Available:https://doi.org/10.14777/uti.2018.13.1.7.

Swidsinski S, Moll WM, Swidsinski A. Bacterial Vaginosis-Vaginal Polymicrobial Biofilms and Dysbiosis. Dtsch Arztebl Int. 2023;120(20):347-54. Available:https://doi.org/10.3238/arztebl.m2023.0090.

Bautista CT, Wurapa E, Sateren WB, Morris S, Hollingsworth B, Sanchez JL. Bacterial vaginosis: a synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections. Mil Med Res. 2016;3:4. Available:https://doi.org/10.1186/s40779-016-0074-5.

Tuddenham S, Ravel J, Marrazzo JM. Protection and Risk: Male and Female Genital Microbiota and Sexually Transmitted Infections. J Infect Dis. 2021;223(12 Suppl 2):S222-S235. DOI: https://doi.org/10.1093/infdis/jiaa762.

Zhu W, Cardenas-Alvarez MX, Tomberg J, Little MB, Duncan JA, Nicholas RA. Commensal Neisseria species share immune suppressive mechanisms with Neisseria gonorrhoeae. PLoS One. 2023; 18 (4): e0284062. Available:https://doi.org/10.1371/journal.pone.0284062.

Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol. 2018 Nov 21;9:2710. Available:https://doi.org/10.3389/fimmu.2018.02710.

Song W, Yu Q, Wang LC, Stein DC. Adaptation of Neisseria gonorrhoeae to the Female Reproductive Tract. Microbiol Insights. 2020; 13: 1178636120947077. Available:https://doi.org/10.1177/1178636120947077.

Yu Q, Wang LC, Di Benigno S, Gray-Owen SD, Stein DC, Song W. Neisseria gonorrhoeae infects the heterogeneous epithelia of the human cervix using distinct mechanisms. PLoS Pathog. 2019;15(12): e1008136.


Liu Y, Feinen B, Russell MW. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front Microbiol. 2011;2:52.


Mahapure K, Singh A. A review of recent advances in our understanding of Neisseria gonorrhoeae. Cureus, 2023; 15(8): e43464. Available:https://doi.org/10.7759/cureus.43464

Elmros T. Survival of Neisseria gonorrhoeae on surfaces. Acta Derm Venereol. 1977;57(2):177-80.

Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 2018;16(4):226-240. Available:https://doi.org/10.1038/nrmicro.2017.169.

Baerentsen R, Tang CM, Exley RM. Et tu, Neisseria? Conflicts of Interest Between Neisseria Species. Front Cell Infect Microbiol. 2022;12:913292. Available:https://doi.org/10.3389/fcimb.2022.913292.

Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, et al. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom. 2020;6(9):mgen000423. Available:https://doi.org/10.1099/mgen.0.000423.

Kurzyp K, Harrison OB. Bacterium of one thousand and one variants: genetic diversity of Neisseria gonorrhoeae pathogenicity. Microb Genom. 2023;9 (6):mgen001040. Available:https://doi.org/10.1099/mgen.0.001040.

Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol. 2023;14:1119834. DOI: https://doi.org/10.3389/fmicb.2023.1119834.

Ray JC, Smirnov A, Maurakis SA, Harrison SA, Ke E, Chazin WJ, Cornelissen CN, Criss AK. Adherence Enables Neisseria gonorrhoeae to Overcome Zinc Limitation Imposed by Nutritional Immunity Proteins. Infect Immun. 2022;90(3):e0000922. Available:https://doi.org/10.1128/iai.00009-22.

Yu Q, Wang LC, Di Benigno S, Stein DC, Song W. Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathog. 2021;17(12):e1009592. Available:https://doi.org/10.1371/journal.ppat.1009592.

Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, et al. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLOS ONE, 2015; 10(8): e0134342. Available:https://doi.org/10.1371/journal.pone.0134342

Unemo, Seifert HS, Hook EW, Hawkes S, Ndowa F, Dillon JR. Gonorrhoea. Nat Rev Dis Primers 2019;5:79. Available:https://doi.org/10.1038/s41572-019-0128-6

Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann Clin Microbiol Antimicrob 2020;19:5 Available:https://doi.org/10.1186/s12941-020-0347-4

McLeod DV, Day T. Sexually transmitted infection and the evolution of serial monogamy. Proc Biol Sci. 2014;281(1796):20141726. DOI: https://doi.org/10.1098/rspb.2014.1726.

Liu Y, Liu W, Russell MW. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 2014;7(1):165-76. Available:https://doi.org/10.1038/mi.2013.36.

Jarvis GA, Li J, Swanson KV. Invasion of human mucosal epithelial cells by Neisseria gonorrhoeae upregulates expression of intercellular adhesion molecule 1 (ICAM-1). Infect Immun. 1999 Mar;67(3):1149-56. DOI: https://doi.org/10.1128/IAI.67.3.1149-1156.1999.

Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe. 2020 May 13;27(5):793-808.e5. DOI: https://doi.org/10.1016/j.chom.2020.03.010.

Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. Structure and function of minor pilins of type IV pili. Med Microbiol Immunol. 2020;209(3):301-8Available:https://doi.org/10.1007/s00430-019-00642-5.

Christodoulides M. Preparation of Lipooligosaccharide (LOS) from Neisseria gonorrhoeae. Methods Mol Biol. 2019;1997:87-96. Available:https://doi.org/10.1007/978-1-4939-9496-0_6.

Alcott AM, Werner LM, Baiocco CM, Belcher Dufrisne M, Columbus L, Criss AK. Variable Expression of Opa Proteins by Neisseria gonorrhoeae Influences Bacterial Association and Phagocytic Killing by Human Neutrophils. J Bacteriol. 2022;204(4):e0003522. Available:https://doi.org/10.1128/jb.00035-22.

Virji M. Pathogenic Neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 2009;7, 274–86. Available:https://doi.org/10.1038/nrmicro2097

Taktikos J, Lin YT, Stark H, Biais N, Zaburdaev V. Pili-Induced Clustering of N. gonorrhoeae Bacteria. PLoS One. 2015;10(9):e0137661. Available:https://doi.org/10.1371/journal.pone.0137661.

Płaczkiewicz J, Adamczyk-Popławska M, Lasek R, Bącal P, Kwiatek A. Inactivation of genes encoding MutL and MutS proteins influences adhesion and biofilm formation by Neisseria gonorrhoeae. Microorganisms. 2019;7(12):647. Available:https://doi.org/10.3390/microorganisms7120647

Miko E, Barakonyi A. The Role of Hydrogen-Peroxide (H2O2) Produced by Vaginal Microbiota in Female Reproductive Health. Antioxidants (Basel). 2023; 12(5):1055. Available:https://doi.org/10.3390/antiox12051055.

Sgibnev AV, Kremleva EA. Vaginal protection by H2O2-producing Lactobacilli. Jundishapur J Microbiol. 2015;8 (10):e22913. DOI: https://doi.org/10.5812/jjm.22913.

Tachedjian G, O'Hanlon DE, Ravel J. The implausible "In vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018;6(1):29. Available:https://doi.org/10.1186/s40168-018-0418-3.

Scillato M, Spitale A, Mongelli G, Privitera GF, Mangano K, Cianci A, Stefani S, Santagati M. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen. 2021;10 (2):e1173. Available:https://doi.org/10.1002/mbo3.1173.

Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med. 2021;172: 633-51. Available:https://doi.org/10.1016/j.freeradbiomed.2021.07.007.

Brendefur Corwin LM, Campbell P, Jakobsen K, Müller F, Lai X, Unemo M, et al. Improvement in Neisseria gonorrhoeae culture rates by bedside inoculation and incubation at a clinic for sexually transmitted infections. Ann Clin Microbiol Antimicrob. 2023; 22(1):27. DOI: https://doi.org/10.1186/s12941-023-00576-0.

Menkiti C, Snyder L. Improvement of Neisseria gonorrhoeae culture media to enable growth without CO2; 2023.


Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol. 2022; 12:909888. DOI:https://doi.org/10.3389/fcimb.2022.909888.

Liyayi IK, Forehand AL, Ray JC, Criss AK. Metal piracy by Neisseria gonorrhoeae to overcome human nutritional immunity. PLoS Pathog. 2023; 19(2):e1011091. DOI:https://doi.org/10.1371/journal.ppat.1011091.

Page MGP. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin Infect Dis. 2019;69(Suppl 7):S529-S537. Available:https://doi.org/10.1093/cid/ciz825

Stoudenmire JL, Greenawalt AN, Cornelissen CN. Stealthy microbes: How Neisseria gonorrhoeae hijacks bulwarked iron during infection. Front Cell Infect Microbiol. 2022 Sep 15;12: 1017348. Available:https://doi.org/10.3389/fcimb.2022.1017348.

Maurakis S, Cornelissen CN. Metal-Limited Growth of Neisseria gonorrhoeae for Characterization of Metal-Responsive Genes and Metal Acquisition from Host Ligands. J Vis Exp. 2020;(157):10.3791/60903.


Criss AK, Seifert HS. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol. 2012;10(3):178-90. Available:https://doi.org/10.1038/nrmicro 2713