Prevalence of Plasmodium falciparum Chloroquine Resistance Transporter (Pfcrt76T) Mutation Associated with Antimalarial Drug Resistance in Two Different Epidemiological Setting (Banfora and Saponé) in Burkina Faso Few Years after the Implementation of Artemisnine Based Combination Therapy (ACTs)

Main Article Content

Séni Nikiema
Samuel Sindié Sermé
Salif Sombié
Amidou Diarra
Noelie Bere Henry
Emilie Salimata Badoum
Sam Aboubacar Coulibaly
San Maurice Ouattara
Jean Moise Kaboré
Florencia Wendkuuni Djigma
Sodiomon Bienvenu Sirima
Jacques Simpore
Issiaka Soulama

Abstract

Introduction: In spite of considerable progress, malaria remains a public health problem in many areas, particularly in sub-Saharan Africa. One major complexity of malaria disease is caused by the development and the spread of vector and parasite resistance to insecticides and antimalarial drugs respectively. The Pfcrt76T gene mutation has been validated as a marker conferring resistance to chloroquine and other antimalarial drugs. The extension of Plasmodium falciparum resistance to commonly used antimalarial drugs (chloroquine, sulfadoxine-pyrimethamine) led to the adoption and the use of artemisinin-based combinations in Burkina Faso since 2005.

Aims: The present study was initiated to assess the prevalence of the Pfcrt76T mutation in two different malaria epidemiological setting after a decade of introduction of artemisinin-based combination therapies (ACTs) in Burkina Faso. 

Methodology:  The study population consisted of 181 uncomplicated malaria patients recruited in Banfora and Saponé health districts in 2012 and 2013. Blood samples were collected from finger prick on filter paper, dried and sent to the Molecular Biology Laboratory at Centre National de Recherche et de Formation sur le Paludisme (CNRFP) for molecular analyzes. DNA of Plasmodium falciparum was extracted with DNA extraction kit (Qiagen®) and the Pfcrt76T mutation was determined based on Polymerase Chain Reaction / Restriction Fragment Length Polymorphism technique (RFLP).

Results:  The results of this study showed that the frequency of the pfcrt76T mutant allele (33.7%) was statistically lower than the Pfcrt76K wild-type allele (57.4%) in the study area. Moreover, the prevalence of Pfcrt76T mutation was neither associated with the patient age nor with the parasite density while a significant difference was observed between the two epidemiological setting, Banfora and Saponé.

Conclusion: The findings of this study has shown a drop in the prevalence of mutant parasites Pfcrt76T in both the study area eight years after the introduction of ACTs compared to previous studies.

Keywords:
Plasmodium falciparum, antimalarial drugs, Pfcrt gene, CTAs, Banfora, saponé, resistance.

Article Details

How to Cite
Nikiema, S., Sindié Sermé, S., Sombié, S., Diarra, A., Bere Henry, N., Salimata Badoum, E., Aboubacar Coulibaly, S., Maurice Ouattara, S., Moise Kaboré, J., Wendkuuni Djigma, F., Bienvenu Sirima, S., Simpore, J., & Soulama, I. (2020). Prevalence of Plasmodium falciparum Chloroquine Resistance Transporter (Pfcrt76T) Mutation Associated with Antimalarial Drug Resistance in Two Different Epidemiological Setting (Banfora and Saponé) in Burkina Faso Few Years after the Implementation of Artemisnine Based Combination Therapy (ACTs). International Journal of Pathogen Research, 3(3-4), 1-11. https://doi.org/10.9734/ijpr/2019/v3i330094
Section
Original Research Article

References

UNICEF / WHO. Reversing the incidence of malaria 2000-2015. WHO Glob Malar Program; 2015.

World Health Organization. World Malaria Report 2018. WHO; 2018.
ISBN 978 92 4 156565 3.

National Demogr of Statistics and Aphia, (INSD). Statistical directory; 2014.

Burkina Faso Ministry of Health. Report of the review of the National Program against Malaria; 2016.

Ndeketa L. Modeled predicted public health impact and costeffectiveness of childhood RTS, S / AS01E malaria vaccine in Malawi, using a markov static model. Am J Trop Med Hyg; 2018.

Pradines B, Dormoi J, Briolant S, Bogreau H, Rogier C. Resistance to antimalarials. Rev Francoph des Lab; 2010.

Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria [Erratum appears in N Engl J Med. 2009;361(17): 1714.

Noedl H, Se Y, Schaecher K, BL Smith, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in Western Cambodia. New England Journal of Medicine; 2008.

Wootton JC, Feng X, Ferdig MT, Cooper RA, J Mu, Baruch DI, et al. Genetic diversity and selective chloroquine sweeps in Plasmodium falciparum. Nature; 2002.

Roper C, Pearce R, Nair S, B Sharp, Nosten F, Anderson T. Intercontinental spread of pyrimethamine-resistant malaria. Science (80-); 2004.

Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med; 2016.

Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourté Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med; 2001.

Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet; 2004.

Tinto H, Zoungrana EB, Coulibaly SO, Ouedraogo JB, Traoré M, Guiguemde TR, et al. Chloroquine and sulphadoxine-pyrimethamine efficacy for uncomplicated malaria treatment and haematological recovery in children in Bobo-Dioulasso, Burkina Faso during a 3-year period 1998-2000. Trop Med Int Heal; 2002.

Tinto H, Sanou B, Dujardin JC, Ouédraogo JB, Van Overmeir C, Erhart A, et al. Short report: Usefulness of the Plasmodium falciparum chloroquine resistance transporter T76 genotype failure index for the estimation of in vivo chloroquine resistance in Burkina Faso. Am J Trop Med Hyg; 2005.

Abdel-Aziz MH. Etude de la relation entre la présence de la Plasmodium falciparum mutation Pfcrt76T et l’efficacité de l’association artesunate amodiaquine dans le traitement du paludisme simple à au Burkina Faso. Mémoire du DEA, Universite Polytechnique de Bobo-Dioulas; 2008.

Somé AF, Sorgho H, Zongo I, Bazié T, Nikiéma F, Sawadogo A, et al. Polymorphisms in K13, pfcrt, pfmdr1, pfdhfr and pfdhps in parasites isolated from symptomatic malaria patients in Burkina Faso. Parasite; 2016.

Wilson PE, Kazadi W, Kamwendo DD, Mwapasa V, Purfield A, Meshnick SR. Prevalence of pfcrt mutations in congolese and malawian Plasmodium falciparum isolates as determined by a new Taqman assay. Acta Trop; 2005.

Ibrahim Maman Laminou, Hadiza Hassane, Ibrahim Arzika, Maimouna Kalilou I, Ousmane JBD. Réseau de surveillance de la chimiorésistance de P. falciparum et cartographie des mutations Pfcrt K761’ et DhfrSerl08Ansdansla Vallée du Niger ; 2006.

Djimdé AA, Fofana B, Sagara I, Sidibe B, Toure S, Dembele D, et al. Efficacy, safety, and selection of molecular markers of drug resistance by two ACTs in Mali. Am J Trop Med Hyg; 2008.

Abdel-Aziz IZ, Oster N, Stich A, Coulibaly B, Guigemdé WA, Wickert H, et al. Association of Plasmodium falciparum isolates encoding the P. falciparum chloroquine resistance transporter gene K76T polymorphism with anemia and splenomegaly, but not with multiple infections. Am J Trop Med Hyg; 2005.

Some AF, Bazie T, Sawadogo A, Nikiema F, Zongo I, Berne L, et al. Polymorphisms in K13, pfcrt, pfmdr1, pfdhfr and pfdhps in parasites isolated from symptomatic malaria patients in bobo-dioulasso, Burkina Faso. Am J Trop Med Hyg; 2015.

Hastings IM. A model for the origins and spread of drug-resistant malaria. Parasito- logy; 1997.

Molyneux DH, Floyd K, Barnish G, Fèvre EM. Transmission control and drug resistance in malaria: A crucial interaction. Parasitology Today; 1999.

Tinto H, Diallo S, Zongo I, Guiraud I, Valea I, Kazienga A, et al. Effectiveness of artesunate-amodiaquine vs. artemether-lumefantrine for the treatment of un complicated falciparum malaria in Nanoro, Burkina Faso: A non-inferiority randomised trial. Trop Med Int Heal; 2014.