SARS-CoV-2 Recombinant Spike Protein-based Vaccine: A Promising Candidate against the Recent Imperial Coronavirus Disease (COVID-19)

Main Article Content

Prosper Obed Chukwuemeka
Christopher Busayo Olowosoke
Oluwaseyi Matthew Oretade


In time past, to date combating against diseases and fatal disorders (of known or idiopathic cause) is a major effort among the human race. The emergence of several, novel and pathogenic viral infections have posed a great threat to humanity and could wipe us out of existence if there are no counter measures. Among the increasing number of pathogenic viruses in this past decade, the advent of the recent imperial SARS-CoV-2 coronavirus type cannot be underestimated as it is not just a malady endemic to a nation, but have also triggered an emergency of public health across the globe. SARS-CoV-2 a memorial of the initial Severe Acute Respiratory Syndrome (SARS) reported in China in (2003) is the etiological agent of the mysterious COVID-19 reported to originate from Wuhan, Hubei province, China in 2019. Though the virus exhibit mild pathogenicity compared to other previously emerged human coronaviruses (HCoV-OC43, HCoV-HKU1, MERS-CoV, and SARS-CoV), however, the high transmissibility and infectivity among human is alarming. In spite the evidences from the increasing number of substantiated global cases and deaths resulting from the epidemic outbreak to date, curative measures to curtail and treat this disease are still lacking. Just like SARS-CoV, it has been revealed that SARS-CoV-2 also uses similar receptor for infectivity and shares similar disease pathogenesis. This knowledge presents a therapeutic target against COVID-19. The presence of cross-reactive epitopes in the spike protein subunit of SARS-CoV and SARS-CoV-2 present the use of neutralization antibodies from convalescent SARS challenged patients against COVID 19. However, limited cross-neutralization due to lower sequence conservation in the Spike protein subunit could render this approach ineffective. Realizing the urgent need for developing potent therapeutics against the imminent risk of COVID-19 on humanity, this review article, suggests the use of SARS-CoV-2 recombinant Spike protein-based vaccine as an immunotherapeutic target to combat COVID-19 based on garnered knowledge from researches on consanguineal coronaviruses (SARS-CoV, and MERS-CoV), and current trends in vaccine development against this infection.

SARS-CoV-2, spike protein, receptor, Neutralizing antibody (nAb), COVID-19, coronavirus, pathogenicity; vaccine

Article Details

How to Cite
Chukwuemeka, P. O., Olowosoke, C. B., & Oretade, O. M. (2020). SARS-CoV-2 Recombinant Spike Protein-based Vaccine: A Promising Candidate against the Recent Imperial Coronavirus Disease (COVID-19). International Journal of Pathogen Research, 4(3), 40-62.
Review Article


Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J, Turner AJ, et al. Angiotensin Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin- Angiotensin System. Circ Res. 2020;126: 1456–74.

World Health Organization. Coronavirus disease 2019 (COVID-19) [Internet]. Situation Report-119; 2020.
[cited 2020 May 18]

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome- related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–44.

Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7:439–50.

Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003;362(9393):1353–8.

Lai MMC, Perlman S, and, Anderson LJ. Coronaviridae. Fields Virol. 2007;1305–18.

Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579:270–3.

Lu G, Liu D. SARS-like virus in the Middle East : A truly bat-related coronavirus causing human diseases. Protein Cell. 2012;3(11):803–5.

Shibo J, Christopher H, Du L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol [Internet]. 2020;41(5):355–9.

He Y, Lu H, Siddiqui P, Zhou Y, Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol. 2005;174(8):4908–4915.

Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, et al. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg Microbes Infect [Internet]. 2019;8(1):841–56.

Pascal KE, Christopher M, Coleman, Aleiandro OM, Vishal K, Ashok B, Jeanette F, Charleen H, et al. Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci. 2015;112(28):8738–43.

Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. Structural bases of coronavirus attachment to host aminopeptidase n and its inhibition by neutralizing antibodies. PLOS Pathog. 2012;8(8):1–12.

Yu X, Zhang S, Jiang L, Cui Y, Li D, Wang D, et al. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody. Sci Rep. 2015;5: 13133.

Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem. 2006;281(23):15829–36.

Hwang WC, Lin Y, Santelli E, Sui J, Jaroszewski L, Stec B, et al. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem. 2006; 281(45):34610–6.

Rockx B, Corti D, Donaldson E, Sheahan T, Stadler K, Lanzavecchia A, et al. Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. J Virol. 2008;82(7):3220–35.

Widjaja I, Wang C, Haperen R Van, Gutiérrez-álvarez J, Dieren B Van, Okba NMA, et al. Towards a solution to MERS: Protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microbes Infect. 2019; 8:516–30.

Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci UNited State Am. 2007;104(29):12123–8.

Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD, Coccia JA, et al. Development and characterization of a severe acute respiratory syndrome – associated coronavirus – neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis. 2005;191:507–14.

Ter Meulen J, Bakker ABHB, Brink EN van den, Weverling GJ, Martina BEE, Haagmans BL, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363:2139–41.

Roberts A, Thomas WD, Guarner J, Lamirande EW, Gregory BJ, Greenough TC, et al. Therapy with a severe acute respiratory syndrome- associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian Hamsters. J Infect Dis. 2006;193(5):685–92.

Sui J, Li W, Roberts A, Matthews LJ, Murakami A, Vogel L, et al. Evaluation of human monoclonal antibody 80r for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol. 2005;79(10):5900–6.

Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science (80- ). 2020;368(6491):630–3.

Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9:383–5.

Meulen J ter, Brink EN Van Den, Poon LLM, Marissen WE, Leung CSW, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants. Plos Medcine. 2006;3(7):1–9.

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun [Internet]. 2020;11(1):1–12.


Saif LJ. Coronavirus immunogens. Vet Microbiol. 1993;37:285–97.

Liu C, Zhou Q, Li Y, Garner L V, Watkins SP, Carter LJ, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci. 2020;6:315–31.

Barcena M, Oostergetel GT, Bartelink W, Faas FGA, Verkleij A, Rottier PJM, et al. Cryo-electron tomography of mouse hepatitis virus : Insights into the structure of the coronavirion. Proc Natl Acad Sci United State Am. 2009;106(2):582–7.

Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918–28.

Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR. SARS coronavirus replicase proteins in pathogenesis. Virus Res. 2008;133:88–100.

Amanat F, Krammer F. Perspective SARS-CoV-2 Vaccines : Status Report. Immunity [Internet]. 2020;52(4):583–9.


Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66: 193–292.

Knoops K, Kikkert M, Worm SHE Van Den, Zevenhoven-dobbe JC, der Meer Y van, Koster AJ, et al. SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum. PLoS Biol. 2008; 6(9):1957–74.

Menachery VD, Graham RL, Baric RS. Jumping species — a mechanism for coronavirus persistence and survival. Curr Opin Virol [Internet]. 2007;23:1–7.


Hofmann H, Pyrc K, Hoek L Van Der, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor. Proc Natl Acad Sci United State Am. 2005;102(22):7988–93.

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7):1–9.

Tsai JC, Zelus BD, Holmes K V, Weiss SR. The N-Terminal Domain of the Murine Coronavirus Spike Glycoprotein Determines the CEACAM1 Receptor Specificity of the Virus Strain. J Virol. 2003; 77(2):841–50.

Raj S V, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–4.

Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282:1–23.

Sawicki SG, Sawicki DL. Coronavirus Transcription: Subgenomic Mouse Hepatitis Virus Replicative Intermediates Function in RNA Synthesis. J Virol. 1990; 64(3):1050–6.

Baric RS, Yount B. Subgenomic Negative-Strand RNA Function during Mouse Hepatitis Virus Infection. J Virol. 2000; 74(9):4039–46.

Krijnse-Locker J, Ericsson M, Rottier PJM, and Gareth G. Characterization of the budding compartment of mouse hepatitis virus : Evidence that transport from the rer to the golgi complex requires only one vesicular transport step. J Cell Biol. 1994; 124:55–70.

Tooze J, Tooze S, Warren G. Replication of Coronavirus MHV-A59 in Sac-cells: Determination of the first site of budding of progeny virons. Eur J Cell Biol. 1984;33(2): 281–93.

de Haan CAM, Rottier PJM. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64: 165–230.

Woo PCY, Wang M, Lau SKP, Xu H, Poon RWS, Guo R, et al. Comparative analysis of twelve genomes of three novel group 2c and Group 2d Coronaviruses Reveals Unique Group and Subgroup Features. J Virol. 2007;81(4):1574–85.

Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660–94.

Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi H, Wong BHL, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. PNAS. 2005; 102(39):14040–5.

Yuen KY, Chan PKS, Peiris M, Tsang DNC, Que TL, Shortridge KF, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet. 1998;351:467–71.

Beigel JH, Farrar J, Chi H, City M, Han AM, Frederick HG, et al. Avian Influenza A (H5N1) Infection in Humans. N Engl J Med. 2005;353:1374–85.

To KKW, Ng KHL, Que T-L, Chan JMC, Tsang K-Y, Tsang AKL, et al. Avian influenza A H5N1 virus: A continuous threat to humans. Emerg Microbes Infect [Internet]. 2012;1(1):1–12.


Graham RL, Baric RS. Recombination, Reservoirs, and the Modular Spike : Mechanisms of Coronavirus Cross-Species Transmission. J Virol. 2010;84(7): 3134–46.

Ye Z, Yuan S, Yuen K, Fung S, Chan C, Jin D. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16(10): 1686–97.

Anthony SJ, Epstein JH, Murray KA, Navarrete-macias I, Zambrana-torrelio CM, Solovyov A, et al. A Strategy To Estimate Unknown Viral Diversity in Mammals. Microbiology. 2013;4(5):598–613.

Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science (80-). 2005;310(5748):676–9.

Anand KB, Karade S, Sen S, Gupta RM. SARS-CoV-2: Camazotz ’ s Curse. Med J Armed Forces India. 2020;76:136–41.

Corman VM, Baldwin HJ, Tateno FA, Zerbinati MR, Annan A, Owusu M, et al. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. J Virol. 2015;89(23):11858–70.

Dijkman R, Hoek L Van Der. Human Coronaviruses 229E and NL63: Close Yet Still So Far. J Formos Med Assoc [Internet]. 2009;108(4):270–9.


Corman VM, Eckerle I, Memish ZA, Liljander AM, Dijkman R, Jonsdottir H, et al. Link of a ubiquitous human coronavirus to dromedary camels. PNAS. 2016; 113(35):9864–9.

Vijgen L, Keyaerts E, Lemey P, Maes P, Reeth K Van, Nauwynck H, et al. Evolutionary History of the Closely Related Group 2 Coronaviruses: Porcine Hemagglutinating Encephalomyelitis Virus, Bovine Coronavirus, and Human Coronavirus OC43. J Virol. 2006;80(14): 7270–4.

Tu C, Crameri G, Kong X, Chen J, Sun Y, Yu M, et al. Antibodies to SARS Coronavirus in Civets. Emerg Infect Dis. 2004;10(12):2244–8.

Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science. 2003;302:276–8.

Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. 2008;133:74–87.

Ge X, Li J, Yang X, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature [Internet]. 2013;503(7477):535–8.


Coleman CM, Frieman MB. Coronaviruses: Important Emerging Human Pathogens. J Virol. 2014;88(10):5209–12.

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol [Internet]. 2016;24(6):490–502.


Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol [Internet]. 2017;25(1):35–48.


Boheemen S Van, Graaf M De, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. Microbiology. 2012;3(6):1–9.

Cotten M, Lam TT, Watson SJ, Palser AL, Petrova V, Grant P, et al. Full-Genome Deep Sequencing and Phylogenetic Analysis of Novel Human Betacoronavirus. Emerg Infect Dis. 2013;19(5):736-742B.

Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, et al. Human Betacoronavirus 2c EMC/2012– related Viruses in Bats, Ghana and Europe. Emerg Infect Dis. 2013;19(3):456–9.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet [Internet]. 2020; 395(10224):565–74.


Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS- CoV-2 infection – a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9:728–32.

Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS , Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11:59.

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 ( ACE2 ) in SARS coronavirus – induced lung injury. Nat Med. 2005;11(8):875–9.

Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses. 2012;4:1011–33.

Heald-sargent T, Gallagher T. Ready, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence. Viruses. 2012;4:557–80.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal [Internet]. 2020;10(2):102–8.


Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–30.

Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24.

Nikolich-zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults : What we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience. 2020;42:505–14.

Garcia-Sastre A, Biron CA. Type 1 Interferon and the Virus-Host Relationship: A Lesson in Detente. Science. 2020; 312(5775):879–82.

Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest [Internet]. 2019;129(9):3625–39.


Snijder EJ, Meer Y Van Der, Zevenhoven-dobbe J, Onderwater JJM, Meulen J Van Der, Koerten HK, et al. Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex. J Virol. 2006;80(12):5927–40.

Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, et al. Middle East Respiratory Syndrome Coronavirus Accessory Protein 4a. J Virol. 2013;87(22): 12489–95.

Decroly E, Imbert I, Coutard B, Selisko B, Alvarez K, Gorbalenya AE, et al. Coronavirus Nonstructural Protein 16 Is a Cap-0 Binding Enzyme Possessing (Nucleoside-2’ O) -Methyltransferase Activity. J Virol. 2008;82(16):8071–84.

Züst R, Cervantes-barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′ - O -methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011; 12(2):137–44.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;17:20.

Rockx B, Baas T, Zornetzer GA, Haagmans B, Sheahan T, Frieman M, et al. Early Upregulation of Acute Respiratory Distress Syndrome-Associated Cytokines Promotes Lethal Disease in an Aged-Mouse Model of Severe Acute Respiratory Syndrome Coronavirus Infection. J Virol. 2009;83(14):7062–74.

Huang K, Su I, Theron M, Wu Y, Lai S, Liu C, et al. An Interferon-Gamma Related Cytokine Storm in SARS Patients. J Med Virol. 2005;194:185–94.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. Lancet Respir Med. 2020;8(4):420–2.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Cell Mol Physiol [Internet]. 2014;306(3):L217–30.


Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39.

Cameron MJ, Bermejo-martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008;133:13–9.

Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–6.

Yao T-T, Qian J-D, Zhu W-Y, Wang Y, Wang G-Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option. J Med Virol [Internet]. 2020;92(6):556–63.


Hull MW, Montaner JSG. Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med [Internet]. 2011;43(5):375–88.


Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;1–8.

Li G, Clercq E De. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov [Internet]. 2020;19: 149–50.


Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep [Internet]. 2017; 7(1):43395.


Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res [Internet]. 2020;30(3):269–71. DOI:

Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen K-Y. Coronaviruses — drug discovery and therapeutic options. Nat Rev Drug Discov [Internet]. 2016;15(5):327–47.


De Clercq E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem – An Asian J [Internet]. 2019;14(22):3962–8.


Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Article SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–80.

Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell [Internet]. 2020;181(2):281-292.e6.


Bekerman E, Neveu G, Shulla A, Brannan J, Pu S-Y, Wang S, et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J Clin Invest [Internet]. 2017;127(4):1338–52.


Pu S-Y, Xiao F, Schor S, Bekerman E, Zanini F, Barouch-Bentov R, et al. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res [Internet]. 2018;155:67–75.


Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect Dis [Internet]. 2020;20(4):400–2.


Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med [Internet]. 2020;8(3):e11–2.


Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol [Internet]. 2020;20:269–70.


Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14:72–3.

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020; 323(16):1582–9.

Chen D, Xu W, Lei Z, Huang Z, Liu J, Gao Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J Infect Dis [Internet]. 2020;93: 297–9.

Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol [Internet]. 2013;11(12):836–48.

Kang S-M, Compans RW. Host Responses from Innate to adaptive immunity after vaccination: Molecular and cellular events. Mol Cells. 2009;27(1):5–14.

Chen W, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 Vaccine Pipeline: An Overview. Curr Trop Med Reports. 2020; 1–4.

Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat Rev Microbiol [Internet]. 2009;7(3):226–36.


Du L, He Y, Jiang S, Zheng B-J. Development of subunit vaccines against severe acute respiratory syndrome. Drugs of Today. 2008;44(1):63–74.

Du L, Zhao G, Li L, He Y, Zhou Y, Zheng B-J, et al. Antigenicity and immunogenicity of SARS-CoV S protein receptor-binding domain stably expressed in CHO cells. Biochem Biophys Res Commun. 2009; 384(4):486–90.

Du L, Zhao G, He Y, Guo Y, Zheng B, Jiang S, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25:2832–8.

Du L, Zhao G, Chan CCS, Sun S, Chen M, Liu Z, et al. Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E . coli cells elicits potent neutralizing antibody and protective immunity. Virology [Internet]. 2009;393(1):144–50.

Chen W, Du L, Chag SM, Ma C, Tricoche N, Tao X, et al. Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccines Immunother. 2014;10(3):648–58.

Jiaming L, Yanfeng Y, Yao D, Yawei H, Linlin B, Baoying H, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine [Internet]. 2017; 35(1):10–8.

Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, et al. A Truncated Receptor-Binding Domain of MERS-CoV Spike Protein Potently Inhibits MERS-CoV Infection and Induces Strong Neutralizing Antibody Responses: Implication for Developing Therapeutics and Vaccines. PLoS One. 2013;8(12):e81587.

Lan J, Yao Y, Deng Y, Chen H, Lu G, Wang W, et al. Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against middle east respiratory syndrome coronavirus challenge. EBioMedicine [Internet]. 2015;2:1438–46.

Pogrebnyak N, Golovkin M, Andrianov V, Spitsin S, Smirnov Y, Egolf R, et al. Severe acute respiratory syndrome (SARS) S protein production in plants: Development of recombinant vaccine. PNAS. 2005; 102(25):9062–7.

Zhou Z, Post P, Chubet R, Holtz K, Mcpherson C, Petric M, et al. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006;24:3624–31.

Cao Z, Liu L, Du L, Zhang C, Jiang S, Li T, et al. Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol J. 2010;7:299.

Jiang S, Bottazzi ME, Du L, Lustigman S, Tseng C-TK, Curti E, et al. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev Vaccines [Internet]. 2012; 11(12):1405–13.

Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, et al. Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants. PLoS Medcine. 2006;3(12):e525.

Wang N, Shang J, Jiang S, Du L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol. 2020;11:298.

Du L, Jiang S. Middle East respiratory syndrome: current status and future prospects for vaccine development. Expert Opin Biol Ther [Internet]. 2015;15(11): 1647–51.

Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines [Internet]. 2020;5(1):1–3.

Koch S, Pong W. The count of companies developing vaccines for coronavirus rises: A tally of new vaccines and therapeutics in development for 2019-nCoV [Internet]. BioCentury; 2020.
[cited 2020 Jun 12].

Nagarajan C. In Search of a COVID-19 Vaccine. IOSR J Dent Med Sci. 2020; 19(5):22–9.

Wong S. Daily Chart: comparing neutralizing titers from four COVID-19 vaccines in non-human primates [Internet]. BioCentury; 2020.
[cited 2020 Jun 12]

Aggarwal KK, Ganguly NK. In quest of a COVID-19 Vaccine: A Race Against Time. The Pysician. 2020;6(2).

Clovers Biopharmaceuticals. CEPI announces COVID-19 vaccine development partnership with Clover Biopharmaceuticals’ Australian Subsidiary [Internet]; 2020.
[cited 2020 Jun 12]

Xinhua. Chinese COVID-19 vaccine set for human trials in Australia [Internet]; 2020.

[cited 2020 Jun 12]

Precision Vaccinations. Coronavirus Vaccines [Internet]. Vaccine info; 2020.

[cited 2020 Jun 12].

Hennessy J. Australia’s been asked to make a coronavirus vaccine at ‘unprecedented speed’ [Internet]. Business Insider. 2020.
[cited 2020 Jun 12]
Available: vaccine-at-unprecedented-speed

Chen W-H, Chang SM, Poongavanam M V, Biter AB, Ewere EA, Rezende W, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. J Pharm Sci. 2017;106(8): 1961–70.

World Health Organization. DRAFT landscape of COVID-19 candidates vaccines-30 May 2020 [Internet]; 2020.


Sanofi. Sanofi’s Response in the Fight against COVID-19 [Internet]; 2020.
[cited 2020 Jun 13]

Bent F. Interview with Bent Frandsen, CEO of ExpreS2ion Biotechnologies [Internet]; 2020.
[cited 2020 Jun 13]