Evaluation of the Correlation between Biofilm Formation and Drug Resistance in Clinical Isolates of Acinetobacter baumannii

Main Article Content

Berrin Celik

Abstract

Aims: The aim of this study was to determine correlation between biofilm formation and drug resistance in clinical isolates of Acinetobacter baumannii.

Study Design: Bacteriological study.

Place and Duration of Study: Laboratory of Microbiology of BilecikSeyhEdebali University, in Turkey, between April 2019 and November 2019.

Methodology: Antibiotic susceptibility of the strains were determined using Kirby-Bauer disc diffusion method in accordance with the principles of Clinical and Laboratory Standards Institute (CLSI). Biofilm presence in A. baumanniiwas identified by the quantitative method. the isolates were incubated in nutrient agar and was prepared from fresh cultures in tubes containing glucose-Luria-Bertani (LB) medium. The A. baumannii(ATCC 19606) type strain was used for comparisons.

Results: In this study was determined the relationship between the biofilm production capacity of the A. baumanniibacteria and its antimicrobial resistance. According to the results obtained from our study, the highest resistance rate (%) was found ceftazidime and piperacillin (95 %) while the highest sensitivity was found colistin (96.6 %) and tigecycline (86.6 %) of the total 60 Acinetobacter baumannii isolates. In addition, the presence of biofilm in the bacteria was defined by quantitative method using microplate. In this study, biofilm was positive in 54 (90 %) isolates and it has been found 51 (85%) of the biofilm positive isolates to be resistant to piperacillin, ceftazidime, cefotaxime and meropenem.

Conclusion: As a result, there is a positive relationship between biofilm formation and antibiotic resistance in thesebacteria.

Keywords:
A. baumannii, virulence, biofilm, antimicrobial resistance.

Article Details

How to Cite
Celik, B. (2020). Evaluation of the Correlation between Biofilm Formation and Drug Resistance in Clinical Isolates of Acinetobacter baumannii. International Journal of Pathogen Research, 5(1), 16-27. https://doi.org/10.9734/ijpr/2020/v5i130124
Section
Original Research Article

References

Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. ApplMicrobiolBiotechnol. 2015;99:2533–2548.

Allen DM, Hartman BJ. Acinetobacter species. In. Mandell GL, Bennett JE, and Dolin R. (Eds.) Mandell, Douglas, and Bennett’s Principles and practice of infectious diseases, (6th edition), Philadelphia: Churchill Livingstone. 2005;2:2632-2636.

Runci F, Bonchi C, Frangipani E, Visaggio D, andVisca P. Acinetobacter baumanniiBiofilm FormationinHumanSerumandDisruptionbyGallium.Antimicrob.AgentsChemother. 2017;61:1.

Boral B, Unaldi O, Ergin A, Durmaz R, Eser OK, The Acinetobacter Study Group. A prospective multicenter study on the evaluation of antimicrobial resistance and molecular epidemiology of multidrug-resistant Acinetobacter baumanniiinfections in Intensive Care Units (ICU) with clinical and environmental features. Ann ClinMicrobiolAntimicrob. 2019;18(1):19.

DoiY, Husain S, Potoski, BA, McCurry KR, Paterson DL. Extensively drug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2009;15(6):980-2.

Du X, Xu X, Yao J, Deng K, Chen S, Shen Z, Yang L, Feng G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta- analysis. Am J Infect Control. 2019;47:9:1140-1145.

McConnell MJ, Actis L, Pachon J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37(2):130-55.

Howard A, O'Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012;3(3):243-50.

Toutain CM, Caiazza NC, O’Toole GA. Molecular basic of biofilm development by Pseudomonads. American Society for Microbiology Pres. Washington. 2004;43-63.

Donlan RM, Costerton W. Biofilms:Survivalmechanismsofclinicallyrelevantmicroorganisms. ClinMicrobiol Rev. 2002;15(2):167-193.

Reena AAA, Subramaniyan A, Kanungo R. Biofilm formation as a virulence factorof Acinetobacter baumannii: An emerging pathogen in critical care units. Int J Curr Res. 2017;3(2):74-78.

Fujishige NA, Kapadia NN, Hirsch AM. A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc. 2006;150(1):79-88.

Wang X, Wang W, Li Y, Zhang J, Zhang Y, Li J. Biofilm activity, ammonia removal and cell growth of the heterotrophic nitrifier, Acinetobacter sp., facilitated by exogenous N-acyl-homoserine lactones. Chem Sci. 2018;8:30783-30793.

Sutherland IW. Biofilm exopolysaccarides: a strong and sticky framewor. Microbiology. 2001;147(1):3-9.

Padera RF. Infection in ventricular assist devices: the role of biofilm. Cardiovasc Pathol. 2006;15(5):264–270.

Lindsay D, von Holy A. Bacterial biofilms within the clinical setting: what healthcare professionals should know. J. Hosp. Infect. 2006;64(4):313-325.

Çiftçi Z. The role of biofilmin in chronic tonsillitis. Taksim training and research Hospital Master thesis; 2005.

Ramadan HH, Sanclement JA, Thomas JG. Chronic rhinosinusitis and biofilms. Otolaryngol Head Neck Surg. 2005;132:414-417.

Hola V, Ruzicka F, Votava M. Impact of surface coating on the adherence of slime producing and nonproducing Staphylococcus epidermidis. New Microbiol. 2004;27(3):305-8.

Patwardhan RB, Dhakephalkar PK,Niphadkar KB,Chopade BA. A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumanniiharbouring multiple plasmids. Indian J Med Res. 2008;128(2):178-87.

Joly-Guillou ML. Clinical impact and pathogenicity of Acinetobacter. ClinMicrobiol Infect. 2005;11:868-73.

Ferrara AM. Potentially multidrug-resistant non-fermentative Gram-negative pathogens causing nosocomial pneumonia. Int J Antimicrob Agents. 2006;27(3):183-95.

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacterbaumannii: mechanisms of virulence and resistance. Int J Antimicrob. Agents. 2010;35(3):219-26.

Gurung J, Khyriem AB, Banik A, Lyngdoh WV, Choudhury B, Bhattacharyya P. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumanniiand Pseudomonas aeruginosa from Intensive Care Units (ICU). Indian J Crit Care Med. 2013;17(4):214-218.

Chemaly RF, Simmons S, Dale CJR, Ghantoji SS, Rodriguez M, Gubb J, Stachowiak J, Stibich M. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis. 2014;2(3-4):79-90.

Wayne PA. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2010;17.

Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol. 2005;12(7):789-796.

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-179.

O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;30(47):2437.

Babapour E, Haddadi A, Mirnejad R, Angaji SA, Amirmozafari N. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumanniiand its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed. 2016;6(6):528-533.

Lim CJ, Cheng AC, Kennon J, Spelman D, Hale D, Melican G, Sidjabat HE, Paterson DL, Kong DC, Peleg AY. Prevalence of multidrug-resistant organisms and risk factors for carriage in long-term care facilities: a nested case-control study. J Antimicrob Chemother. 2014;69(7):1972–1980.

Vidal R, Dominguez M,Urrutia H, Bello H, Gonzalez G, Garcia A, Zemelman R. Biofilm formation by Acinetobacter baumannii.Microbios. 1996;86(346):49-58.

Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics.MicrobiolMolBiol Rev. 2000;64(4):847-67.

Lee HW, Koh YM, Kim J, Lee JC, Lee YC,Seol SY, Cho DT, Kim J. Capacity of multidrug- resistant clinical isolates of Acinetobacter baumanniito form biofilm and adhere to epithelial cell surfaces.ClinMicrobiolInfec. 2008;14 (1):49-54.

Sechi LA, Karadenizli A, Deriu A, Zanetti S, Kolayli F, Balikci E, Vahaboglu H. PER-1 beta- lactamase production in Acinetobacter baumanniiis related to cell adhesion. Med SciMonit. 2004;10(6):180-4.

Pneumatikos IA, Dragoumanis CK, Bouros DE. Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology. 2009;110(3):673–680.

Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E, Calleja I, Menendez R, Bonastre J. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit. Care. 2012;16(3):R93.

Zago CE, Silva S, Sanitá PV, Barbugli PA, Dias CM, Lordello VB, Vergani CE. Dynamics of biofilm formation and the interaction between Candida albicansand methicillin-susceptible (MSSA) and resistant Staphylococcus aureus (MRSA). Plos One. 2015;10(4):e0123206.

Motaouakkil S, Charra B, Hachimi A, Nejmi H, Benslama A, Elmdaghri N, Belabbes H, Benbachir M. Colistin and rifampicin in the treatment of nosocomial infections from multiresistant Acinetobacterbaumannii. J Infec. 2006;53(4):274-278.

Maryam R, Golnaz YZ, Mojgan O, Malihe T, Nour A. Identification of fivephylogenicgroups of carbapenemase (blaOXA-23,24,51,58,143). In Acinetobacter baumannii strains isolated from clinical samples in Iran by multiplex PCR. Der Pharma Chem. 2015;7(7):11-16.

XieR, Zhang XD, Zhao Q, Peng B, Zheng J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumanniiinfections disclosed a faster increase in OECD countries. Emerg Microbes Infect. 2018;7:31.

Rossi F, Girardello R, Cury AP, Gioia TS, Almeida JN, JrDuarte AJ. Emergence of colistin resistance in the largest university hospital complex of São Paulo, Brazil, over five years.Braz J Infect Dis. 2017;21(1):98101.

Uğur M, Genç S. A 3-year Resistance Profile of Acinetobacter baumanniiand Pseudomonas aeruginosa Strains Isolated from Intensive Care Units. Turk J Med Sci. 2018;111-117.

Shirmohammadlou N, Zeighami H, Haghi F, Kashefieh M. Resistance pattern and distribution of carbapenemase and antiseptic resistance genes among multidrug-resistant Acinetobacter baumanniiisolated from İntensive Care Unit patients. J Med Microbiol. 2018;67(10):1467-1473.

Gazi H, Sürücüoğlu S, Kurutepe S, İnmez E, Dinç G, Özbakkaloğlu B. In Vitro Antibiotic Susceptibilities in Nosocomial Acinetobacter baumanniiStrains Isolated from Intensive Care Unit (ICU) and other Clinics. ANKEM. 2005;19(3):115-8.

Perez LR. Acinetobacter baumanniidisplays inverse relationship between meropenem resistance and biofilm production. J Chemother. 2015(27):13–16.

Savcı U, Ozveren G, Yenişehirli G, Bulut Y, Ozdaş S. In-vitro susceptibility of Acinetobacter baumanniistrains isolated from clinical specimens. Turk J Clin Lab. 2015; 6(1):24-29.

Balcı M, Bitirgen M, Kandemir B, Turk AE, Erayman I. Antibiotic Susceptibility of Nosocomial Acinetobacter baumanniiStrains. ANKEM. 2010;24(1):28-33.

Rahimi S, Farshadzadeh Z, Taheri B, Mohsen MM, Haghighi MA, Bahador A. The Relationship Between Antibiotic Resistance Phenotypes and Biofilm Formation Capacity in Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol. 2018;11(8):e74315.

Iraz M, Ceylan A, Akkoyunlu Y. Investigation of Antibiotic Resistance Rates of AcinetobacterSpecies Isolated from Various Clinical Samples. ANKEM. 2012;26(2):80-85.

Nahar A, Anwar S, Miah RA. Association of Biofilm Formation with Antimicrobial Resistance Among the Acinetobacter Species in A Tertiary Care Hospital in Bangladesh. J Medicine. 2013;14(1):28- 32.

Cevahir N, Demir M, Kaleli I, Gürbüz M, Tikveşli S. Evaluation of biofilm production, gelatinase activity, and mannose-resistant hemagglutination in Acinetobacter baumanniistrains. J MicrobiolImmunol Infect. 2008;41(6):513-8.

Can F, Kurt-Azap O, Demirbilek M, Karabay G, Ergin F, Arslan H. Biofilm formationbyAcinetobacter baumannii strains isolated in hemocultures. Turk J Infect. 2006;20(3):159-163.

Badave GK, Kulkarni D. Biofilm Producing Multidrug Resistant Acinetobacter baumannii: An Emerging Challenge. J ClinDiagn Res. 2015;9(1):DC08–DC10.

Bala M, Gupte S, Aggarwal P, Kaur M, Manhas A. Biofilm producing multidrug resistant Acinetobacter species from a tertiary care hospital: a therapeutic challenge. Int J Res Med Sci. 2016; 4(7):3024-3026.

Kim HA, Ryu SY, Seo I, Suh SI, Suh MH, Baek WK. Biofilm formation and colistin susceptibility of Acinetobacter baumanniiisolated from Korean nosocomial samples. Microb Drug Resist. 2015; 21(4):452–457.

Emami S, Eftekhar F. The Correlation between Biofilm Formation and Drug ResistanceinNosocomial Isolates of Acinetobacter baumannii. Avicenna J ClinMicrobInfec. 2015;2(2):e23954.

Ryu SY, Baek WK, Kim HA. Association of biofilm production with colonization among clinicalisolates of Acinetobacterbaumannii. Korean JIntern Med. 2017;32(2):345-351.

Arvaniti K, Lathyris D, Ruimy R, Haidich AB, Koulourida V, Nikolaidis P, Matamis D, Miyakis S. The importance of colonization pressure in multiresistant Acinetobacter baumanniiacquisition in a Greek Intensive Care Unit. Crit Care. 2012;16(3):R102.

Rodríguez-Baño J, Marti S, Soto S, Fernandez-Cuenca F, Cisneros JM, Pachon J, Pascual A, Martínez-Martínez L, McQueary C, Actis LA, Vila J. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. ClinMicrobiol Infect. 2008;14(3):276–8.

Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilmsascomplex differentiated communities. AnnuRev Microbiol. 2002;56:187- 209.

Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311(5768): 1737–174.